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The RPA equation is solved by perturbation in MNler-Plesset (MP) and 
Epstein-Nesbet (EN) partitions, which are first compared on a specific 
example. To still accelerate the faster one (EN), a third scheme is proposed, 
which involves preliminary diagonalization within a limited subset ~, followed 
by usual EN perturbation between ~ and the rest of the whole configuration 
space. Criteria for the choice of 5 are given. 

K e y  w o r d s :  Perturbation theory - R P A  - Rotational strengths - Carbonyl 
chromophores - Norcamphor. 

1 .  I n t r o d u c t i o n  

For a satisfactory description of electronic spectra one needs to introduce elec- 
tronic correlation, either via configuration interaction (CI) [6-9] for the separate 
calculations of the states concerned, or via the more direct procedure using 
Equations-of-Motion (EOM) [15, 30] (Random Phase Approximation, (RPA) 
[10-12] or in more sophisticated approximations [30b, c]). Even for small 
molecules, of course, one is soon faced with problems related to the size of the 
basis set: restriction of the CI or RPA to a limited number of low-lying configur- 
ations usually leads to reasonable transition energies, but this becomes a daring 
attempt when one has to calculate quantities like the rotational strength [R], 
[1-4], which are very sensitive to the quality of the wave functions; in this 
specific case, modification of the basis may lead to results differing both in sign 
and amplitude [8, 12]! Volosov and Zubkov [8] have discussed the influence of 
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the CI size on the value of [R] and given a recipe for semi-empirical calculations: 
they propose to deal with only half of the full basis (limited to energy-ordered 
monoexcitations) when [R] oscillates as the size varies, and with a hundred of 
configurations in well-behaved cases. 

In this paper, we investigate the behaviour of rotational strengths during 
CNDO/S - RPA or ab initio - RPA calculations and we show how the RPA 
eigenvalues can be determined perturbatively to deal with the whole basis set. 

2. Method of Calculation 

Diagonalization of the RPA matrix by the standard method [13-14] becomes a 
considerable task when the basis set increases. Moreover, spectroscopists are 
generally interested only in the few lowest transitions, without need of all the 
eigenvalues. Although some existing procedures are appropriate for this case 
[25], one can also tentatively turn to the perturbation scheme, to which the 
problem may be reduced in most cases for ground state calculations; unfortu- 
nately it soon appears that, in RPA, numerators and denominators involved in 
the perturbation formulas may be of the same order of magnitude, so that the 
underlying assumptions of perturbation theory no longer apply. We shall see, 
however, that reorganization of the basis set and convenient choice of the 
zero-order superoperator hamiltonian are able to accelerate the convergence of 
the perturbation series. 

2.1. Perturbation Theory for RPA 

2.1.1. General equations 

Simons and Je~rgensen [15] have shown that: 
(a) analysis of the EOM within the framework of perturbation theory leads to 
the same formal relations as the usual Rayleigh-Schr6dinger scheme; 
(b) completeness of the basis set requires inclusion of both the excitation 
operators IO +) and the associated deexcitation operators lOs), with the closure 
relation: 

1 = 2 ( I o 7 ) ( o 7 1  - I os) (os l ) .  (1) 
J 

Assuming that the eigenoperators ]0 +) (eigenvalue w~) of the superoperator 
hamiltonian: 

~ = ~ o + ~  (2) 

~ 1 o  2) = <o, lo7") (3) 

can be developed as sums of terms of order 0 (corresponding to ~o), 1, 2 , . . .  : 

IO[)=lO[)o+ E IO[). (4a) 
n~0  
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wi=wi(o) + Z wi(,o (4b) 
n # O  

one finds after collecting terms of the same order, as in the usual RSPT: 

~o107 )o = o~,(o)l o ?  )o (5.0) 

2gol OT)I + R I O ; ) o  = w,(o)lO ~)~ + w,(1)l O7)0 (5.1) 

~01o?).+~1o;~)._1= E o~,(,)lo~)._~. (5.n) 
p = 0  

Developing [07)  on the solutions of Eq. (5.0): 

Io7)  = Z  (o(O~lOT)lO~)o-o(OjlOT)lOj)o) 
J 

= E (Zj]O-~)o- Y~lOj)o). (6) 
J 

Eqs. (5) give the corrections to oJi(0) and IO+)o. As usual, the coefficient Zi = 
0(07 I O +) is undetermined and we require the corrections [O~)n to be orthogonal 
to IO~)o: 

+ + o(Oi IO~ )= 1 

o(O~1O7).=0 Vn s0  (7) 
Bracketting I Eq. (5.n) with 0(07 ] gives the n- order correction to oJ i(o) as function 
of the (n - 1 ) - o r d e r  correction to [07)0: 

o(OT 1~1o7).-1 = o~i(.). (s) 

Bracketting Eq. (5.n) with (AI = o(OT [(] # / )  or (A I = o(Ojl, Vj, gives the n-order  
correction to IO+)o as function of lower order ones: 

n - 1  

[w~(o)-oJA(AIA)](AIO~)~ = ( A l b I O n ) , _ 1 -  ~ w~(p)(A]Oi~),_p. (9) 
p=l 

Explicit expressions up to order 3 are given in the Appendix. 

2.1.2. Choice of W0: MP and EN schemes 
-t- -t- 

The operators OS = q,,5 = a ma~ (m = particle, a = hole) or their spin-adapted 
S + equivalents ~vtO,, which form the basis set in the RPA scheme, are usually 

obtained through an SCF calculation. 

A natural choice for ~0 is then ~, superoperator associated with the Har t r ee -  
Fock hamiltonian F:  

F = Z  + (10) Eiai ai. 
i 

1 in RPA the bracket is defined by (AIYgIB)= (HF][A +, [H, B]]IHF) and A and B are lp-lh 
operators. 
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This corresponds exactly, in the operator space, to the so-called M~ller-Plesset 
(MP) partition [16, 17] in the ordinary ket-space. The above q ~  (or 
~2+~)  are just the eigenoperators of Wo = ~-: 

,~olqm,~)=a~m,~lqm,~)=(em + + + --e,~)lqm,~) (11) 

or (see Eqs (8) and (9) for n = 0): 

+ ~ 7  + ((2.1 1(2~) = 8.~o. (aJ. > 0). (12) 

But ~r is not the only superoperator having these O~+ as eigenoperators. We 
can as well use a superoperator ~ possessing eigenvalues A . .  equal to the 
diagonal elements of the exact one ~,  in the {A.} (A~ is a general notation for 
(2.+ and O.)  basis: 

+ffta + A ~ . = ( ( 2 .  I 1(2~) 

= (A.I~g~IA.). 

In this second scheme, called Epstein-Nesbet (EN) partition [17, 18], the 
diagonal elements of the perturbation superoperator ~ '  reduce to zero. 

We can define the superoperators involved in both partitions, by their matrix 
elements in the {A.} = {(2+, (2.} basis, and schematize the whole as in Figs. 1 
and 2: 

(a) ~ = ~ +  ~ (Me~ller-Plesset) 

(A.I~IA~) = 8 j . o .  = 3 . . ( e ~  - e~) (~ =[mo<]) 

( A . I ~ I A . )  = ( A . I , ~ I A . ) - ( A . I ~  (13) 

(b) ~ = ~t'~ + ~t' (Epstein-Nesbet) 

(m. I~olA.)= (A~I~IA.) 

(m,.l~olm~) = 0  
(14) 

(A.I~t'IA.) = 0 

( A . I ~ ' I A ~ )  = (A,~I~IA~) = ( A . I ~ J A ~ ) .  

Fig. 1. M~ller-Plesset (MP) partition 

Fig. 2. Epstein-Nesbet (EN) partition 
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2.1.3. Compar i son  of convergences  

(a) Compar i son  at second order.  Suppose we are interested in some  part icular  
transition, associated with opera to r  10+)o (eigenvalue 0)ir 0)o) in the initial 
H a r t r e e - F o c k  result. F r o m  the definitions of Y(o and ~ ,  we first not ice that  the 
ze ro -o rde r  Eps t e in -Nesbe t  energy (~o ~) already contains the first-order correct ion 
to the M~511er-Plesset energy:  

09~ ~--- 0)0  q- OJ1 . 

The  first-order E N  correct ion is zero (see Fig. 2), so that  bo th  part i t ions are 
equivalent,  for  energy, to  first-order. 

The  E N  correct ion to energy  starts at second order,  witha: 

y~ O + 2 Io(OSl~lOT)ol 2 Io(O~1 I ,)ol 
! t f l 

t~ i  0),(0) --0)~z(o) ~z 0)i(o) +tO~(O) 

= 0)'.2~ (O+) + 0)',~2)(Q) (15) 

and we have, f rom Eq. (14): 

t t ~o.o~ -0).~o~ = 0).0) - 0).~o~ +o(OT I~1o,+)o-o(O.1~+ IO+)o 
1 1 [ l+0(o~ l~ lOS)o_  o(OTl~lOT)o 

! r 
O,) i(0) - -  0)ix(0) 0) i (0)  - -  0)/~(0) r 0)  ix(0) 0) i (0)  - -  0) t-~(0) 

so that:  

, + 10(OS)l~loT)012[ 0(oS1~102.)0 0(OTI~IoT)0+.  ] 
0) i ( 2 ) ( Q  ) =  E 1-f " ( 1 6 )  [ J ~ i  0)i(o) -- 0)~z(o) (-o i(o) -- 0)~(o) 0) i(o) -- 0) ~(o) 

0);(2)(o)=_zlo(O+,l~lOT)olZ[x o(O~l~lO~)o o(OTl~lo~;)o +. . .]. (17) 
tt 0)i(0) - 0) r o) i(o) k- 0)~(o) 0)i(0) q- 0)~(o) 

Clearly, the first terms in Eqs. (16) and (17) are the MP 0)2, and the next two 
ones are a par t  of 0)3. It  is thus hoped  that  the E N  part i t ion will give faster 
convergence  to the per turba t ion  series. 

(b) Numerical illustration. To test this assertion, we have pe r fo rmed  a model  
calculation on a par t  of the R P A  matrix relative to [2, 2, 1 ]b icyc loheptan-2-one  
(norcamphor) ,  built up f rom a C N D O / S  [19] calculation of the g round  state. 
The  absolute molecular  configurat ion is (1R, 4S) (Fig. 3); the geomet ry  is given 
by X- ray  diffraction [20] and we have opt imized the posit ion of hydrogens  
th rough  a Wes the imer - type  p rocedure  [21]. 

Fig. 3. O ~  

2 Here we have put [Q.+)o (ix ~ i) and IQ.)o to distinguish 10+)o from the other basis operators. 
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Table 1. M011er-Plesset partition 

J.-P. Flament and H.-P. Gervais 

Perturbation Corrected Exactenergy 
order energy % error O v e r l a p  (diagonalization) 

0 0.455318 230 0.993720 0.137737 u.a. 
1 0.141064 2.5 0.994323 
2 0.134864 2.08 0.993964 
3 0.140514 2.01 0.994125 
4 0.135223 1.82 0.993609 
5 0.140033 1.66 0.993106 

Table 2. Epstein-Nesbet partition 

Perturbation Corrected 
order energy % error Overlap 

0 0.141064 2.5 0.99372 
1 0.141064 2.5 0.999977 
2 0.137749 8.7.10 -3 0.999998 
3 0.137734 2.2.10 -3 0.999998 
4 0.137736 7.10 -4 0.999998 
5 0.137737 0 0.999998 

The truncated basis we used contains the 60 Q~+ and 60 Q ,  obtained when 
exciting an electron from one of the three highest occupied MO's  to one of the 
twenty virtual orbitals. 

Tables 1 (MP partition) and 2 (EN partition) collect results relative to the 
transition energy, for the lowest (n ~ ~-*) transition; the last column gives the 
overlap between the excitation operator obtained in this case by perturbation 
and the "exact" one, given by direct diagonalization. 

Clearly, the EN partition leads to faster convergence than the MP one (which 
gives rise to oscillations). But the exact value is reached only at fifth order, for 
a transition which is well isolated from the others. The aim of the method being 
to limit calculation to the first order (or at least to a low order), it is thus necessary 
to modify the basis set. 

2.2. A Third Scheme 

It involves a preliminary reorganization of the operator basis, in a spirit similar 
to that of the CIPSI method [22]. For the transition associated with operator 
]Q[) in the initial Har t ree-Fock result, we no more restrict the zero-order 
operator to I O~)o = ]O~-), as above: we first diagonalize the exact superoperator 
Yg within a limited basis 5,  formed by operators which interact strongly (according 
to some criterion) with IQ+). This leads to a new partition in the EN scheme: 
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(1) in subspace ~ (dimension d), where diagonalization has been effected, the 
new basis operators are the eigenoperators of Yg: 

~10; ' )o  = ,o io IO~)0 (18a) 

with 

d 
107)o= E ( z , . I O + )  - YN'IQN)) (18b) N=I 

the zero-order  superoperator  Y~g is defined by the new eigenvalues rO~(o) = corn; 
the new perturbation ~ "  has zero matrix elements. 

(2) in the complementary subspace ~-, the basis is {Q+,O./O +, 0 . ~ } ;  
Yt% and ~ "  are defined as in 2.1.2 by: 

(AN [Yt'glAN) = (AN IWIAN) (19a) 

(ANlY~"IA~) = (ANIY~IA~). (19b) 

(3) in the $ - X  blocks, ~g  has zero elements while ~ "  is given by: 

(ANIY~"]O[)o = (ANIYeIO+)o. (20) 

Account has thus been taken of the preliminary diagonalization in $. This new 
partition scheme is visualized in Fig. 4: 

Fig. 4. Epstein-Nesbet perturbation after partial ~ ~- ~ + ~ 
diagonalization 3s = ~ + 6t" 

Remarks 
(i) In the case of an MP partition, we would have for the N block of N: 

d 2 Col(O) ~ (Z2i + YNi)(em -- e~) (/./, = [ma]) (21) 
N=I 

+ -4- 
o(O, I ~ ] o ,  )o = o~,0-,oi~0) 

and expressions analogous to Eq. (13) or Eq. (20) for the -IF and ~-qF blocks. 

(ii) The schemes presented here dealt with the RPA in which the operator  space 
is limited to lp- lh operators, but we believe that it may be extended to include 
2p-2h operators [15] in the same manner, or to problems which retain the RPA 
form. 

3. Application of the Third Scheme to a Specific Example 

We have tested the efficiency of the third scheme by computing the rotational 
strengths associated with the lowest transitions of bicyclo[2,2,1]heptan-2-one, 
a chiral ketone already presented in 2.1.3 (Fig. 3). As mentioned above, this is 
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a very good indicator for the quality of transition operators, because of the high 
sensitivity of [R]; this quantity is most conveniently computed in the dipole 
velocity form and expressed as the reduced rotational strength [23], so that we 
have for a transition 0-~ n starting from the fundamental electronic state: 

[Ro,] = 1.08. 104~ = -- 254(01~1n). (n IF ̂  VI0) (22) 
(-DOn 

where the energy and moments are given in atomic units. In Eq. (22), transition 
moments can be derived from those associated with the various configurations 
by using an expression similar to Eq. (6) for the transition operator lOT): 

(ilV[O) = 45 Y. (Zmot, i - -  Ym~,;)(mlV[a) (23a) 
m o t  

(ilr ^ V]O) = 45  E (Zmot,i - Ym~,,)(mlr ^ Via). (23b) 
m o t  

The necessary fermion operators were computed using both a CNDO/S or an 
ab initio STO-3G minimal basis calculation; in the CNDO/S case, the atomic 
integrals appearing in the development of (23a-b) were evaluated using Slater 
type orbitals approximated by STO-4G combinations [24] (use of STO-6G 
functions left the results essentially unchanged). 

3.1. CNDO/S Results for the Lowest Transition (n ~ 1r*) 

We first examine the behavior of JR] with the size of the basis set, and the 
influence of the choice of 5 on the quality of the perturbation results, for the 
lowest (n ~ ~'*) transition, which is well separated from the others. As already 
mentioned, the CNDO/S ground state of bicyclo[2,2,1]heptan-2-one contains 
22 occupied MO'S (three of which were used in the numerical illustration of 
2.1.3) and 20 virtual orbitals. We thus have done two types of calculations: 

(1) a series of diagonalizations of the matrices obtained by successive enlarge- 
ments of the configuration basis. The corresponding monoexcitations are gener- 
ated automatically as follows: 

First take all excitations from the highest occupied MO to the 20 successive 
virtual levels, with increasing ei: 

Then create all excitations of similar nature, starting from the next highest 
occupied MO, e t c . . .  (final number of interacting configurations: NCI = 440). 

Each time twenty new excitations have been generated, a diagonalization is 
performed by the method recently proposed [25], using the result of the previous 
diagonalization as initial operator. 

(2) a series of perturbation calculations (restricted to order 1 in the transition 
operator, 2 in the transition energy), for various choices of the subspace 5. In 
this series, one fixes the excitations appearing in 5, while those forming q/- are 
generated in the same way as in case 1) (but by-passing the members of 5, of 
course). Four subspaces have been selected: 
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dimension 24 
~24 is formed by the excitations which, in a previous calculation using a small- 
dimension $,  appeared with a coefficient Z greater than 10 -2. 

dimension 29 
~29 obeys the same criterion as ~24, but with a test value of 7 �9 10  -3.  

dimension 40 
~4o is formed in a similar way as ~29, but strongly interacting excitations starting 
from the ~" orbital have been included. 

dimension 41 
Here $41 contains systematically all the mono-excitations associated with the 
HOMO and LUMO levels of the ground state, that is of types n ~ i* (i* any 
virtual orbital) and j ~ It* (j any occupied MO). In this case, only two operators 
of T have Z superior to 5 . 1 0  -3. 

Figure 5 shows the evolution of [R ] as function of the total number of monoexcita- 
tions (NCI) included in the calculation. From these diagrams, one can say that: 

(a) the "diagonalization" line suffers considerable oscillations (the extremal 
values, not represented in fig. 5, are - 2 3  and + 15). The value - 2 3  corresponds 
to the twenty excitations starting from the n orbital; the next twenty ones start 
from the zr orbital, with a dramatic effect since it changes the sign of [R ]. 

(b) the "perturbation" lines show less pronounced oscillations, because some 
of the operators with a large Z are already included in $.  But examples 24 and 

8 

6 

4 

2 

-2 

- 4  

-6  

-8 

0 

/ \ 

I I  I 1 . 1  I I I I I 

100 200 3 ~  400 
NCE 

40 

24 

4-1 
Diag 

29 

Fig. 5. Variation of [R] with the number of configurations (NCI) ( C N D O / S ;  t r ans i t ion  n ~ ~-*). 
. . . . . .  by direct diagonalization; - -  by perturbation (order 1; dimensions 24, 29 and 40 for 
subspace 5 ) ;  . . . . . .  by perturbation (order 1; dimension 41 for 5) .  (The numbers on the right 
indicate the dimension of 5)  
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29 demonstrate clearly that the criterion relative to coefficient Z must be severe 
if one wants accurate values of [R ]. 

(c) curve 41 shows that this choice was good; the value of JR] for the complete 
basis (NCI  = 440; and remember  that this is a perturbation to order 1 only, in 
the transition operator) is - 5 . 9 6 7 ,  which compares very favourably with the 
value of - 6 . 2 5 2  obtained by diagonalization. 

(d) comparing curves 40 and 41, it appears that the dimension of $ is not a 
sufficient criterion to ensure a good value of [R]: some configurations (like the 
~" ~ i* ones) are finally unimportant as concerns coefficients Z and Y, but give 
rise to large values of [R]; in a small or unappropriate basis, they may have 
overestimated coefficients and then induce exaggerated effects which cannot be 
compensated (at order  1) by the remainder of the configuration set. 

It is thus recommended to do this type of calculation step by step, enlarging 
subspace $ by progressively decreasing the test on Z and Y; a final value of 
about 5 �9 10 -3 is necessary to get fairly accurate results for [R]. 

3.2. C N D O / S  and ab initio Results for the Four Lowest  Transitions 

All the results in 3.1 concerned the lowest (n ~ 7r*) transition, which is well 
separated from the others. We now turn to the treatment of several transitions 
at a time; the corresponding calculations were  done in the CN D O /S  and ab 
initio minimal basis (STO/3G with standard exponents [24], on account of the 
size of the molecule). 

At  the beginning of this larger problem, the subspace $ was so chosen as to 
contain the 25 (CNDO/S)  or 20 (ab initio) first excitations (according to the 
ordering of diagonal elements); the test value/3 on the coefficients was then 
decreased in four steps, from 0.05 to a limit of 0.005 (the value/3 used at one 
iteration was that of the previous step, diminished by at least 0.016). Results 
obtained in each case after complete EN perturbation (at order  one in the 
transition operators) are given in Fig. 6 (ab initio) and 7 (CNDO/S),  where the 
numbers in abscissa indicate the dimension of $ (d) and the value of/3.  The 
straight lines correspond to the values obtained by diagonalization, using the 
M O R  method [25], and with simultaneous optimization of all the operators, as 
proposed by Raffenetti for CI [26] (the first three solutions of the CNDO 
problem were attained in respectively 12, 42 and 142 iterations by M O R  [25], 
while Raffenetti 's procedure gave the first four solutions in respectively 5, 9, 10 
and 15 iterations). 

As results from Figs. 6 and 7, convergence is observed for the four transitions 
at/3 = 0.005 in the ab initio computation, but difficult to obtain in the CN D O /S  
case for the two highest transitions, which need a quite large $ because of the 
excessive number of configurations involved in their description (notice that the 
absolute values of JR] observed in CNDO/S  are rather poor, but the sign is 
correct). In the same way, the ab initio value for the (n ~ It*) lowest transition 
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Fig. 6. Variation of JR] with subspace S (dimension D; test value/3): ab initio calculation 
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Fig. 7. Variation of [R] with subspace N (dimension D; test value/3): CNDO/S calculation 

oscillates dramatically before the last iteration3: in fact this transition is better 
described than the others at step 0, and the first iterations artificially bring into 

excitations that should mainly participate in the other transitions; only when 
/3 becomes small enough will all operators be finally treated upon the same 
footing. 

All transition energies (not represented in Figures 6 and 7, but available upon 
request) were  correct within 0.02 eV at step 2 (/~ ~ 0.03). 

3 When studying only this transition, a reasonable value of -1 .89 is obtained in three iterations 
(NCI = 27,/3 = 0.005) 
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Remarks 
(i) The MP partition gave poorer results; in particular, adopting a smaller value 
of 0.003 for the limit of/3, we still got a wrong sign for the fourth transition in 
the ab initio case. 
(ii) Both CNDO/S and ab initio calculations give the same sign for the final 
rotational strength of the lowest (n-~ zr*) transition; this sign agrees with the 
Octant Rule's prevision [27], but not with the experimentally observed one at 
room temperature [28]. This is not surprising, because the experimental [R] 
varies considerably with temperature, mainly due to vibronic effects [29] that 
may mask the exact equilibrium value. Results presented throughout this paper, 
and which are purely non-vibronic, support this point of view. 

4. Conclusion 

Calculations on bicyclo [2,2,1] heptan-2-one show that the rotational strength 
(a very sensitive observable taken as an indicator of the accuracy of transition 
operators) strongly depends on the size of the RPA basis. The problem can be 
dealt with by perturbation techniques, provided that the zero-order superhamil- 
tonian has been properly chosen; but the Epstein-Nesbet partition gives better 
results than the M~ller-Plesset one, which may lead to a wrong sign when the 
absolute value is small. 

For a well-isolated transition, with a dominant configuration (n--> ~'* for in- 
stance), Volosov and Zubkov's prescription [8] (include all n --> i* and j --> ~r* in 
S) gives accurate results. 

When dealing with several states, or states without dominant configuration, good 
values are obtained by progressive enlargement of subspace 5, though a decrease 
in the test value /3 for the coefficients and provided that its ultimate limit is 
about 5 �9 10 -3 (thus far from the value of 0.1 used by some authors [7]). 

Appendix 

1st Order 

= o(O  I 1o +)o 

o(0; I lot )o 
0 ( 0 ; 1 0 ; ) 1  - -  

0)~(0)  - -  O)i(O ) 

0(o lot), - o(Ojl lOT)o 
o) i(o) + o2i(o) 

2nd Order 

= 7_, - 
j # i  O.)i(O) --OJ~j(O) i ~i(o)  + o)j(o) 
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+ + + + 
,o+,o+~ o(O, I~1O.)oo(O~1~1o, )o 

Ok i I i ./2 = ~, 
k ~ i  ((.,Oi(O) --O,)](O))(O)i(O) --O.)k(O) 

-o(Otl~lOt)o ~176176176 
(~o ~(o) - ab(o) )2 

o(O, lO~-)== E o(O;l~lOZ)o0(O;l~lot)o 
k # i ((1) i(O) "~- (-'01(0) )(60 i(O) - -  O) k(O) ) 

4- ....+,~,...+. o(OA~lo, )o 
- o t U i  I ~ l U l  )o 7 - - - - ~  �9 

kO) i(O) "1- O.) j(O) ) 

3rd Order 

,o,(~) = g g 
k ~ i  l ~ i  
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~; o(O7 I~ IO~)o o(o~l~lOT)o 
( o ~ . o ) -  .b (o ) ) (~o .o )+  o~ k(o)) 

o(Oj I~ I Ok)o o(O~ I~lOt )o 
(w.o) + o-b(o) )(w .o) + w k(o)) 

o(O + I~1o; )o o(O# I~r I o;- )o 0(o;-I~lo + )o 
((.0 i(0) - -  0.) k ( O ) ) ( O )  i (0)  - -  O) / (0)  ) 

o(OT I~1O~ )o o(O; I~ I O,)o o(O, I~ lo t  )o - 2 E y  
k. .  ~ (~O.o) -o,k(o))(O~.o) + . , ,o ) )  

o(Ot I~lok)0 o(O,, I~ I O,)o o(O, I~lot )o 
k 1 (0)i(0)  JrO)k(O))((Oi(O) "}-(-01(0)) 

-o(O-tl~lo-;)o [~ ,  I~176176176 ~(o)) = ~ - -  -------~I~176176176 
- , o  (o~,o) +o.,k(o)) ] 
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